ref | material | size | size err | size unit | size type | size comment | BET | b nanozyme | b 10n | b unit | specific act | sa 10n | sa unit | comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No matching records found |
ref | material | enzyme type | substrate | pH | T | km | km err | km 10n | km unit | vmax | vmax err | vmax 10n | vmax unit | kcat | kcat err | kcat 10n | kcat unit | kcat/km | kcat/km
10n | kcat/km unit | comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No matching records found |
ref | material | application | target | method | linear range | linear ran unit | LOD | lod unit | recovery | comment |
---|---|---|---|---|---|---|---|---|---|---|
390 | Nanozymes with hard coronas (Corona-NZ) | We observed that the structure of the AuNP ligands dictates the formation of protein coronas and selectively controls catalytic activity of nanozymes. A hard “irreversible” corona (without TEG) deactivated nanozymes through aggregation and steric blocking, while a soft “reversible” corona (with TEG) partially reduced the catalytic activity. The catalytic activity of both soft and hard nanozymes was restored after proteolytic degradation of the protein corona through endogenous proteases present in the endosome and lysosome. Hence, a selective intracellular activation system (without TEG) and an always-on system (with TEG) are obtained by engineering the monolayer of ligands on nanoparticles. This study provides a direct and versatile approach for specific activation of bioorthogonal catalysts through tuning the formation of the protein corona on nanozymes. This approach has the potential to reduce the off-target effect and extend on-demand generation of imaging agents and localized therapeutics. The generality of this system is suitable for in vivo applications, which are currently under investigations in our group. |
ref | title | DOI | material type | comment |
---|---|---|---|---|
No matching records found |