ref | title | DOI | material type | comment | |
---|---|---|---|---|---|
4353 | 1168 | Development and Demonstration of Functionalized Inorganic-Organic Hybrid Copper Phosphate Nanoflowers for Mimicking the Oxidative Reactions of Metalloenzymes by Working as a … | https://doi.org/10.1039/D1TB00221J | Composite | Copper phosphate nanoflowers (CuPNFs) have been synthesized in the presence of different aromatic phenanthroline derivatives (Ln), leading to inorganic–organic hybrid materials (Ln-CuPNFs) |
ref | material | size | size err | size unit | size type | size comment | BET | b nanozyme | b 10n | b unit | specific act | sa 10n | sa unit | comment | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8214 | 1168 | Ln-CuPNFs | 70 | 50 | μm | SEM | The micrographs given in Fig. 3 support that the petal density and the diameter of the flower increases from 20 to 120 μm. Fig. 2a–e gives a comparative analysis among the SEM micrographs of CuPNFs synthesized using different Ln derivatives. While the simple CuPNFs are of 25 μm in size, the average size of the NFs changes to 8.5 μm for Ln possessing the phenyl group (Fig. 2b), which suggests the marginal effect of the Ph-group as a glue to hold the flower-like morphology of copper phosphate. | 54.98 | Based on the BET analysis, the surface area for simple CuPNF given in Fig. 1d is 83.28 m2 g−1 while the organic derivatized ones exhibited 54.98, 51.88, 39.24, and 25.92 m2 g−1 for Ln-CuPNF (n = 1, 2, 3, 4), respectively. |
ref | material | enzyme type | substrate | pH | T | km | km err | km 10n | km unit | vmax | vmax err | vmax 10n | vmax unit | kcat | kcat err | kcat 10n | kcat unit | kcat/km | kcat/km 10n | kcat/km unit | comment |
---|
ref | material | application | target | method | linear range | linear ran unit | LOD | lod unit | recovery | comment |
---|