Periodic

Materials
  • ALL
  • Enzyme-like Activity
  • ALL
  • Metal
    ref material enzyme type substrate pH T km km err km 10n km unit vmax vmax err vmax 10n vmax unit kcat kcat err kcat 10n kcat unit kcat/km kcat/km 10n kcat/km unit comment
    5971 78 AuNP-NH2OH POD H2O2 4 RT 0.41 mM 36.05 -9 M/s 1269.33 0 1/s 78 -3 M-1 s-1 78
    5972 78 AuNP-HQ POD TMB 4 RT 0.23 mM 25.95 -9 M/s 913.59 0 1/s 78 -3 M-1 s-1 78
    5973 78 AuNP-AA POD H2O2 4 RT 0.2 mM 26.24 -9 M/s 924.09 0 1/s 78 -3 M-1 s-1 78
    5974 78 AuNP-NH2OH POD TMB 4 RT 0.58 mM 63.54 -9 M/s 2218.30 0 1/s 78 -3 M-1 s-1 78
    5975 78 AuNP-HQ POD H2O2 4 RT 0.16 mM 20.16 -9 M/s 724.64 0 1/s 78 -3 M-1 s-1 78
    5976 78 AuNP-AA POD TMB 4 RT 0.27 mM 32.52 -9 M/s 1145.17 0 1/s 78 -3 M-1 s-1 78
    5983 92 Rhodium SOD O2•- 92 92
    5986 96 AuNCs POD TMB 0.403 mM 9.568 -8 M/s 96 96
    5987 96 AuNCs POD H2O2 0.513 mM 4.751 -8 M/s 96 96
    6018 144 Pd NSs POD H2O2 4.44 mM 4.02 -8 M/s 144
    6019 144 Au21Pd79 POD H2O2 5.89 mM 8.19 -8 M/s 144 144
    6020 144 Au21Pd79 POD TMB 0.295 mM 19.65 -8 M/s 144 144
    6021 144 Pd NSs POD TMB 0.21 mM 7.01 -8 M/s 144
    6033 155 Au NCs-ICG CAT H2O2 2.02 mM 4.55 -6 M/s 155
    6060 171 HS-PtNPs OXD TMB 0.01012 mM 171 171
    6104 208 AgNPs OXD ABTS 7.2 μM 2.89 μM/min 208 208
    6135 260 PtNPs OXD TMB 0.062 mM 11.44 -8 M/s 260 260
    6158 278 AuNP transferase HPNPP 278
    6162 283 Cit-IrNPs CAT H2O2 21.09 mM 283
    6163 283 Cit-IrNPs POD TMB 3.86 RT 0.0906 mM 1.7 -6 M/s 0.5 3 1/s 283
    6164 283 Cit-IrNPs POD H2O2 3.86 RT 0.27 mM 1.5 -6 M/s 0.44 3 1/s 283
    6165 283 Cit-IrNPs OXD TMB 3.86 RT 0.287 mM 0.587 -6 M/s 283
    6174 292 RuTeNRs POD H2O2 208.85 51.86 mM 2.66 0.32 -8 M/s 292 292
    6175 292 RuTeNRs SOD 18.78 3.58 -3 mM 58.90 3.37 -6 μM/min 292
    6210 324 Cu NCs POD TMB 1.125 mM 0.72 -7 M/s 324 324
    6211 324 Cu NCs AAO AA 0.46 mM 23.5 -4 M/s 1/s 324 M-1 s-1
    6212 324 Cu NCs CAT H2O2 207.1 mM 418.4 μM/s 324
    6213 324 Cu NCs POD H2O2 2.52 mM 1.68 -7 M/s 324 M-1 s-1
    6214 324 Cu NCs SOD ·O2- 324
    6229 336 OEG-AuNPs+1 ppm Hg2+ POD TMB 0.3537 mM 7.7 -6 M/s 7.33 3 1/min 336 7 M-1 min-1 336
    6230 336 OEG-AuNPs POD TMB 0.2842 mM 2.34 -6 M/s 2.23 3 1/min 336 6 M-1 min-1 336
    6236 357 PtNFs POD H2O2 10.97 mM 5.63 -8 M/s 357
    6237 357 PtNFs POD TMB 0.29 mM 6.3 -8 M/s 357
    6240 362 AuNPs POD TMB 8.7719 μM/min 3364 1/min 362
    6244 366 Pd−Ir core-shell nanoparticles(5.9 nm) POD TMB 6.4 -4 M 1.3 -7 M/s 3.4 5 1/s 366
    6245 366 Pd−Ir core-shell nanoparticles(13.0 nm) POD TMB 3.4 -4 M 7.2 -7 M/s 1.2 6 1/s 366
    6246 366 Pd−Ir core-shell nanoparticles(9.8 nm) POD TMB 4 -4 M 8.9 -6 M/s 9.6 5 1/s 366
    6247 366 Pd−Ir core-shell nanoparticles(3.3 nm) POD TMB 2.7 -4 M 6.3 -7 M/s 9.4 4 1/s 366
    6267 383 AuNPs@Ag POD 383
    6324 466 4-AHA@AuNPs nanoparticles POD TMB 22 μM 1.6 -7 M/s 466 466
    6325 466 4-AHA@AuNPs nanoparticles POD H2O2 215 μM 2.4 -7 M/s 466
    6374 509 AuNPs@C.CNF POD TMB 4.0 RT 0.149 mM 10.68 -8 M/s 509 The apparent stead-state kinetic analysis of AuNPs@C.CNF were performed in a 1 mL of 0.5 M acetate buffer (pH 4.0) containing 20 μL of AuNPs@C.CNF as nano-enzyme and different concentration of H2O2 at fixed concentration of TMB or vice versa The reaction was monitored spectrophotometrically in time scan mode at 652 nm.The kinetic parameters were calculated by using the Michaelis-Menten equation, V = Vmax[S]/(Km+[S]), where V is the initial reaction velocity, Vmax is the maximal reaction velocity, and [S] substrate concentration and Km is the Michaelis constant. Km and Vmax were obtained by using Lineweaver-Burk plot equation, 1/V= (Km/Vmax) (1/[S]) + (1/Vmax).
    6375 509 AuNPs@C.CNF POD H2O2 4.0 RT 0.359 mM 11.38 -8 M/s 509 509
    6380 515 aptamers@BSA-AuNCs POD TMB 5.5 37 0.3 mM 17.42 -8 M/s 515 515
    6381 515 aptamers@BSA-AuNCs POD H2O2 5.5 37 40.7 mM 14.47 -8 M/s 515 As shown in Table 1, with H2O2 as the substrate, the Km value of bacteria@aptamer1,2@BSA-AuNCs was similar to that of aptamer1,2@BSAAuNCs, demonstrating that the enhancement of the peroxidase-like activity of aptamer1,2@BSA-AuNCs did not originate from the increased affinity for H2O2. In comparison with aptamer1,2@BSA-AuNCs, the Vmax value of bacteria@aptamer1,2@BSA-AuNCs exhibited about 3 times improvement, which might be attributed to the enrichment of bacteria toward aptamer1,2@BSA-AuNCs and TMB, thus promoting the proximity of aptamer1,2@BSA-AuNCs to TMB and greatly increasing the local concentrations of the enzyme-mimetic nanoparticles and their substrate.
    6382 518 Hep-Pt NCs POD TMB 6 37 0.016 mM 7.18 -8 M/s 518 518
    6383 518 Hep-Pt NCs POD H2O2 6 37 165 mM 11.98 -8 M/s 518 518
    6411 543 Au@SiO2-NH2 SOD 543 543
    6424 549 β-CD@AuNPs 549 549
    6438 561 urchin-like Pt nanozymes POD TMB 0.174 mM 1.01 μM/s 2.69 4 1/s 561 561
    6439 561 urchin-like Pt nanozymes POD H2O2 82.7 mM 1.77 μM/s 4.75 4 1/s 561 561
    6447 569 Au NPs OXD 569 569
    6526 644 Pt SOD TMB+H2O2 644 644
    6528 646 Co(OH)2 OXD TMB 0.362 mM 6.06 M/s 646 646
    6539 658 AuNPs POD 658
    6549 666 AuNCs-SF POD 666
    6551 668 D-Trp-OMe@AuNCs POD TMB 0.182 0.192 -8 M/s 668
    6552 668 D-Trp-OMe@AuNCs POD H2O2 0.057 0.831 -8 M/s 668
    6553 668 D-Trp-OMe@AuNCs-TC POD TMB 0.254 1.923 -8 M/s 668
    6554 668 D-Trp-OMe@AuNCs-TC POD H2O2 0.01 1.748 -8 M/s 668
    6565 671 IrNPs POD 671
    6585 695 Pt OXD TMB 0.102 mM 330 nM/s 695
    6632 727 Ir NPs POD H2O2 3.27 mM 22.57 -8 M/s 727
    6633 727 Ir NPs POD TMB 0.12 mM 12.56 -8 M/s 727
    6667 754 CMP-Pt/EG OXD epinephrine. 0.042 mM 18.97 μM/min 754
    6679 771 AuNP1-Zn(II) hydrolase BNP 8 40 0.086 mM 1.1 -4 1/s 771
    6680 771 AuNP2-Zn(II) hydrolase BNP 8 40 0.19 mM 6.6 -5 1/s 771
    6681 771 AuNP3-Zn(II) hydrolase BNP 8 40 0.093 mM 8.2 -5 1/s 771
    6712 807 AuNPs OXD Glucose 24.6 mM 57.4 -8 M/s 807
    6714 812 Cu NCs POD OPD 7.0 35 1.09 mM 2.01 -3 mM/s 3146 1/s 812
    6713 812 Cu NCs POD H2O2 7.0 35 1 mM 467 nM/s 723 1/s 812
    6718 821 [Pyr]Ac- Ni0 POD TMB 0.54 mM 7.3 -8 M/s 821
    6717 821 [Pyr]Ac- Ni0 POD H2O2 0.34 mM 5.1 -8 M/s 821
    6786 881 FePOs POD TMB RT 881
    6781 881 FePOs OXD TMB 0.72 0.25 mM 0.85 0.19 mM/min 881
    6770 882 o-CDs OXD TMB 882
    6765 882 o-CDs POD TMB 0.146 mM 20.67 -8 M/s 882
    6789 882 Magnetite POD H2O2 RT 882
    6779 882 Magnetite POD H2Q 0.209 mM 2.85 -8 M/s 882
    6784 882 Magnetite POD OPD + H2O2 26.75 20.1 mM 0.42 0.23 mM/min 882
    6791 883 PVP-PtNC POD TMB + H2O2 883
    6793 889 Ptn-JP NCs POD glucose 0.019 mM 58.84 -4 M/s 889
    6783 889 Ptn-JP NCs POD TMB + H2O2 1.22 0.42 mM 0.93 0.24 mM/min 889
    6788 889 Ptn-JP NCs SOD 889
    6797 889 Ptn-JP NCs POD H2O2 4.0 25 9.344 mM 12.49 -8 M/s 889
    6798 889 Ptn-JP NCs POD TMB 4.0 25 0.719 mM 51.33 -8 M/s 889
    6801 895 BSA-MgNPs CAT H2O2 7.4 20 37 50 70 10.56 μM 1.7 -6 M/s 895
    6802 895 BSA-MgNPs CAT AR 7.4 20 37 50 70 38.07 μM 3.94 -6 M/s 895
    6803 896 Ptn-PEI NPs POD H2O2 43.6 mM 8.5 -8 M/s 896
    6809 903 AuNPs multi-functionalities CO-HAuCl4-En 903
    6815 908 Au(111) glucose 908 DFT calculations were used to reveal the chiral selective oxidation mechanism of glucose on Au NPs and elucidate the roles of Phe ligands
    6860 958 Silver citrate Laccase Adrenaline 7.4 RT 0.056 mM 1.18 -2 mM/min 958
    6862 960 Pt NP's POD TMB 1.5 55 0.12 mM 2.82 -8 M/s 960
    6863 961 Au NC's Oxidase Thiamine 7.4 RT 961
    6864 962 Pt POD H2O2 7.4 RT 2.31 mM 3.32 -8 M/s 962
    6868 966 Au POD TMB 4.0 37 966
    6869 967 Au POD TMB 6.0 RT 0.11 mM 15.39 -9 M/s 967
    6882 978 Au NPs OXD Glucose 978
    6894 988 Cy-AuNCs POD TMB 1.925 mM 212.3 -8 M/s 988
    6930 1005 Pt-PIL-MWCNTs POD H2O2 4.0 40 16.55 mM 7.163 -8 M/s 1005
    6949 1015 AA-PtNPs 1015
    7044 1079 Copper Nanozyme POD H2O2 25 mM 2.32 μM/min 1079 1079
    7045 1079 Copper Nanozyme POD ABTS 36 mM 1.74 μM/min 1079 1079
    7067 1098 Au NCs(300) OXD nitrobenzene 4.1 0.5 mM 0.3 0.02 mM/min 1 0.1 1/min 1098 0.05 1098
    7065 1098 Au NCs(90) OXD nitrobenzene 6 1.2 mM 0.15 0.02 mM/min 0.52 0.07 1/min 1098 0.029 1098
    7066 1098 Au NCs(965) OXD nitrobenzene 3.4 0.6 mM 0.69 0.09 mM/min 2.4 0.3 1/min 1098 0.21 1098
    7083 1118 Cu NanoZyme POD H2O2 5 37 7.9 mM 10.3 -8 M/s 1.21 -5 1/s 1118 1118
    7084 1118 Cu NanoZyme POD TMB 5 37 0.25 mM 21.5 -8 M/s 2.53 -5 1/s 1118 1118
    7095 1127 1-Me-D-Trp@AuNCs POD H2O2 6.3 -3 mM 0.46 -8 M/s 1127
    7096 1127 1-Me-D-Trp@AuNCs POD TMB 1.51 mM 1.91 -8 M/s 1127
    7110 1148 Pd NCs POD H2O2 25 80.8 mM 5.652 μM/min 1148
    7111 1148 Pd NCs POD TMB 25 0.063 mM 4.584 μM/min 1148
    7126 1165 CuNFs POD H2O2 6.5 mM 0.02 -3 mM/s 1165
    7127 1165 CuNFs POD TMB 0.07 mM 0.12 -3 mM/s 1165
    7153 1209 Cu/CeS POD H2O2 43.3 14.5 mM 1209
    7205 1287 GNE-based Au NPs POD H2O2 0.118 mM 0.147 μM/s 1287 1287
    7206 1287 GNE-based Au NPs OXD Glucose 0.089 mM 0.133 μM/s 1287 1287
    7214 1297 Rh NPs POD H2O2 0.37 mM 3.92 -8 M/s 1297 1297
    7215 1297 Rh NPs POD TMB 0.78 mM 16.26 -8 M/s 1297 1297
    7220 1308 Cu NPs hydrolase Salicylic acid acyl-β-d-glucuronide 1308 1308
    7229 1317 Pd POD 1317 1317
    7237 1326 SBA-AmPA/Au POD TMB 0.22 mM 0.8567 -8 M/s 1326 1326
    7238 1326 SBA-AmPA/Au POD H2O2 128 mM 1.83 -8 M/s 1326 1326
    7293 1385 Co2+ POD H2O2 0.31 mM 2.8 -8 M/s 1385 1385
    7294 1385 Co2+ POD ABTS 12.1 mM 4.7 -7 M/s 1385 1385
    7306 1397 citrate-Os NPs POD TMB 0.096 mM 4.12 -7 M/s 1.72 3 1/s 1397 7 M-1 s-1 1397
    7305 1397 citrate-Os NPs POD H2O2 3.88 mM 5.65 -7 M/s 2.35 3 1/s 1397 5 M-1 s-1 1397
    7333 1417 Au@SiO2@Fe3O4@SiO2 microspheres POD OPDA 552.5 μM 19.6 μM/min 1417
    7349 1436 Ag@PANI POD TMB 1436
    7365 1450 2D SnSe dehydrogenase 1450